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Objectives

Matching

I Given a graph G = (V , E ).

I A Matching M is a pairing of
adjacent vertices such that each
vertex is matched with
at most one other vertex.

I In other words, M is the set of
independent edges.

I |M| = 2.

I |M| = 3.
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The Matching Problem

I Find a matching M such that
I M has maximum cardinality.

I Edge weight w of M is maximum
for edge weighted graph.

I w(M) = 11.
I w(M) = 17.

I In this work we consider maximum
cardinality matching.
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Applications

I Combinatorial optimization, e.g. assignment problem, stable
marriage problem.

I Linear solvers, e.g. improve pivoting.

I Load balancing in parallel computation, e.g. graph
partitioning.

I Bioinformatics, e.g. alignment problems.
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Maximum Cardinality Matching: G = (V , E )

A general greedy framework:

1: M = ∅
2: while E 6= ∅ do
3: Pick the BEST remaining edge

(v , w).
4: Add (v , w) to the matching M.
5: Remove all edges incident on v

and w from E .
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Maximum Cardinality Matching: Example

A general greedy framework:

1: M = ∅
2: while E 6= ∅ do
3: Pick the BEST remaining edge

(v , w).
4: Add (v , w) to the matching M.
5: Remove all edges incident on v

and w from E .
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Best Edge

I HOW to choose the BEST edge of the remaining edges?
I What should the criteria be?

I Although exact algorithms are polynomial, they could be
expensive in practice.

I Therefore, the common choice is heuristics, which -
I gives high-quality matchings in many cases.
I is much faster for large problem sizes.
I is easier to implement.
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Heuristics - Best Edge

I Simple greedy [Möhring and Müller–Hannemann, 1995, Magun, 1998].
I Picks an edge (v , w) where v and w are unmatched vertices.

I Static Mindegree
I Picks the minimum degree unmatched vertex v and find a

lower degree unmatched neighbour w .

I Dynamic Mindegree - Updates degree after deletion of edges.
I Karp–Sipser algorithm - Keeps track of degree 1 vertices

only + Simple greedy [Aronson et al., 1998].
I This is the method of choice in many cases [Langguth et al., 2010].
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Objectives

I Investigate the parallelization of Maximum Cardinality
Matching for distributed memory computers.

I The Karp–Sipser algorithm has been picked.
I High quality matching quickly.
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Sequential Karp–Sipser Algorithm: Idea

I A vertex v is singleton if d(v) = 1.

I Idea: Match singleton vertices. If there is no singleton vertex,
run simple greedy algorithm, that is, pick edges randomly.
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Sequential Karp–Sipser Algorithm: Details

1: M ← ∅
2: while E 6= ∅ do
3: if E has singleton vertices then
4: Pick a singleton vertex v uniformly at random.
5: Let (v , w) be the only edge adjacent to v .
6: else
7: Pick an edge (v , w) uniformly at random.
8: Add (v , w) to the matching M.
9: Remove all edges incident on v and w from E .

10: return M
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Sequential Karp–Sipser Algorithm: Example
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Our Parallel Matching Algorithm

I Assume that the graph is distributed among the processors.
I Vertex based distribution (in matrix term, 1D).
I Edge based distribution (in matrix term, 2D).
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Our Parallel Matching Algorithm: Idea

I Idea: Each processor operates in synchronized rounds (BSP).
I Performs a local version of the sequential algorithm.
I Communicates.
I Processes incoming messages.

I The reason of using BSP is:
I Enhances load balancing by detecting at an earlier stage that a

processor has run out of work.
I Takes some of the tediousness away of message-passing.
I Many communication optimizations can be left to the system.
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The Parallel Matching Algorithm: Processor Pi

1: while E 6= ∅ do
2: for Pre-specified number of vertices and Ei 6= ∅ do
3: if Ei has singleton vertices then
4: Pick a singleton vertex v .
5: Let (v , w) be the only edge adjacent to v .
6: else
7: Pick an edge (v , w) randomly.
8: Try to match v with w .
9: BSP-Sync()

10: Process-Messages()

Md. Mostofa Ali Patwary et al. Parallel Greedy Graph Matching
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The Parallel Matching Algorithm: Messages

I Original vertex (owned) and ghost vertex.

I Matching requests: Local and Non-Local.

I Confirmation back and removal of edges.
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The Parallel Matching Algorithm: Messages

Table: Summary of message types used.

Type Meaning

Match request Matches a vertex v with w
Confirmation Confirms success of matching v
Removal Removes all edges adjacent to v
Handover Hands over vertex v to a nonowner
Give-up Removes a processor from nonOwners(v)
Criticality Local count of vertex v became 1
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Communication Volume: Upper and Lower Bounds

Parallel Matching compared to Parallel Sparse Matrix Vector
Multiplication (SpMV ):

I 1
2 · Vol(SpMV ) ≤ Vol(Matching) ≤ 3

2 · Vol(SpMV ) + R,

R represents the number of random match requests that failed
during the algorithm.
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Test Sets and Experimental Setup

I Huygens, an IBM pSeries 575 supercomputer, 104 nodes, each
with 16 processors (IBM Power6 dual-core 4.7 GHz) and 128
GByte of memory.

I Linux, C++ using the BSPonMPI [Suijlen, 2010], IBM XL
C/C++ compiler, -O3 optimization level.

I Mondriaan package [Vastenhouw and Bisseling, 2005] to
distribute the graphs among the processors.
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Test Sets and Experimental Setup. . .

We use 4 different type test sets.

I Set 1 (rw1-rw10): 10 real-world graphs.
I Set 2 (rw11-rw14): 4 real-world graphs.

I Medical science, structural engineering, civil engineering,
circuit simulation, DNA electrophoresis, Information Retrieval,
and Automotive Industry [Davis, 1994, Koster, 1999].

I Set 3 (sw1-sw3): 3 synthetic small-world graphs.

I Set 4 (er1-er3): 3 Erdös-Rényi random graphs [Bader and Madduri, 2006].
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Test Sets and Experimental Setup. . .

Table: Structural properties of the input graphs.

|V | |E | Degree |V | |E | Degree
avg max avg max

rw1 999,999 3,995,992 3 4 rw11 281,903 3,985,272 14 38,625
rw2 1,585,478 6,075,348 3 5 rw12 16,783 9,306,644 554 14,671
rw3 52,804 10,561,406 200 2,702 rw13 683,446 13,269,352 19 83,470
rw4 2,063,494 12,964,640 6 95 rw14 343,791 26,493,322 77 434
rw5 63,838 14,085,020 220 3,422 sw1 50,000 14,112,206 282 5,096
rw6 504,855 17,084,020 33 39 sw2 75,000 24,466,808 326 6,273
rw7 503,712 36,312,630 72 842 sw3 100,000 33,727,170 337 7,989
rw8 952,203 45,570,272 47 76 er1 100,000 3,319,658 33 59
rw9 1,508,065 51,164,260 33 34 er2 150,000 6,753,302 45 76
rw10 914,898 54,553,524 59 80 er3 200,000 12,008,022 60 100
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Experimental Results: Communication Volume

Table: Communication volume in 1000 words for p = 32.

SpMV Matching SpMV Matching
Name 1D 2D 1D 2D Name 1D 2D 1D 2D

rw1 (ecology2) 53 51 60 55 rw11 (Stanford) 340 141 479 234
rw2 (G3 circuit) 81 65 92 73 rw12 (gupta3) 710 44 1,305 61
rw3 (crankseg 1) 78 78 155 152 rw13 (St Berk.) 716 448 1,152 812
rw4 (kkt power) 118 120 106 107 rw14 (F1) 139 130 148 139
rw5 (crankseg 2) 92 90 181 171 sw1 1,007 417 2,111 303
rw6 (af shell8) 51 47 85 65 sw2 1,957 829 3,999 563
rw7 (inline 1) 104 105 115 118 sw3 2,017 832 4,255 528
rw8 (ldoor) 131 128 140 148 er1 1,856 1,133 1,788 1,157
rw9 (af shell10) 113 105 169 150 er2 3,451 1,841 3,721 1,635
rw10 (boneS10) 150 145 228 189 er3 5,476 2,569 6,350 1,990

I 2D takes less communication and moving from 1D to 2D
gives a savings of a factor of 2 for Set 3 and 4, even larger
savings for Set 2, and a modest gain in Set 1.
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Experimental Results: Speedup

How many vertices, VpR to process per round?

Table: Speedup as a function of VpR for p = 32.

VpR = 100 200 400 800 1600 100 200 400 800 1600

rw1 0.67 0.74 0.62 0.40 0.24 rw11 4.25 5.32 6.15 6.17 6.45
rw2 0.66 0.72 0.59 0.38 0.20 rw12 25.36 18.99 30.55 29.55 30.35
rw3 12.65 13.07 15.13 14.53 14.42 rw13 1.18 1.59 1.83 1.85 1.73
rw4 1.55 1.30 0.72 0.31 0.17 rw14 13.15 16.67 19.54 21.63 24.23
rw5 14.11 16.62 19.69 21.09 19.99 sw1 29.49 33.38 34.63 30.58 30.82
rw6 6.26 9.29 12.92 14.03 13.82 sw2 27.87 31.16 33.85 33.91 33.75
rw7 9.19 11.17 12.09 12.85 12.88 sw3 33.35 40.83 42.18 44.64 42.43
rw8 6.93 8.45 9.22 9.25 8.83 er1 5.20 6.02 7.64 8.60 9.51
rw9 6.44 9.66 12.19 13.08 11.50 er2 7.15 9.60 11.00 12.71 13.63
rw10 7.07 8.41 8.82 7.97 6.60 er3 14.31 15.97 18.14 19.72 21.55

Speedup increases with VpR.
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Experimental Results: Matching Quality

How many vertices, VpR to process per round?

Table: Matching quality (in %) as a function of VpR for p = 32

VpR = 100 200 400 800 1600 100 200 400 800 1600

rw1 98.15 98.14 98.13 98.08 98.12 rw11 71.75 71.61 71.48 71.32 71.11
rw2 96.71 96.69 96.61 96.52 96.45 rw12 98.31 98.00 97.35 97.35 97.35
rw3 99.21 99.15 99.13 99.16 99.19 rw13 66.19 66.15 66.09 65.99 65.87
rw4 88.55 88.58 88.58 88.57 88.57 rw14 99.54 99.52 99.53 99.51 99.49
rw5 99.26 99.24 99.24 99.20 99.18 sw1 79.81 78.07 77.06 75.66 75.59
rw6 99.93 99.93 99.92 99.93 99.93 sw2 90.74 88.87 86.25 84.09 81.89
rw7 99.56 99.55 99.55 99.54 99.53 sw3 81.87 80.13 78.47 77.29 76.01
rw8 98.58 98.58 98.58 98.58 98.57 er1 97.50 93.45 85.67 78.69 74.13
rw9 99.94 99.94 99.94 99.94 99.94 er2 98.43 95.63 89.12 82.54 76.07
rw10 99.58 99.56 99.55 99.55 99.55 er3 95.98 93.14 88.94 83.42 77.59

The matching quality decreases with VpR.
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Parallel Matching Algorithm: Maximum Speedup

Figure: Maximum speedup obtained using 1D and 2D.
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I Speedup in almost all cases (1D and 2D).
I Test Set 1 and 2 - Same speedup for 1D and 2D.
I Test Set 3 and 4 - 2D is better than 1D.
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Parallel Matching Algorithm: Corresponding Quality

Figure: Matching quality in % - Sequential, 1D and 2D.
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I Test Set 1 and 2 - Sequential, 1D, and 2D - same quality.
I Test Set 3 - 1D and 2D perform better than Sequential.
I Test Set 4, 2D gives better quality compared to 1D.
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Conclusion

I We have parallelize a Greedy Graph Matching Algorithm for
distributed memory computers.

I We have obtained good speedups for many graphs without
compromising the quality of the matching.

I Edge-based partitioning (2D) gives larger scalability and better
matching quality compared to vertex-based partitioning (1D).

I 1
2 · Vol(SpMV ) ≤ Vol(Matching) ≤ 3

2 · Vol(SpMV ) + R.
In practice, the range is between 0.63 to 1.95 times
Vol(SpMV ) for 2, 4, 8, 16, 32, and 64 processors.
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Future Works

I Extend this work for Parallel Maximum Weighted Matching.

I We intend to generalize this approach for the whole class
where an edge-based approach will be suitable.
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Thank you.
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1D and 2D

I In both 1D and 2D cases, we consider only the lower triangle
and the edges are unique among the processors.

I The difference between 1D and 2D:
I For 2D we try to divide the edges equally among the

processors.
I For 1D, we try to divide the vertices equally among the

processors.

I But still for 1D case, all the edges of a vertex may not be in
the same processor always.

I This way, we can view vertex partitioning as a special case of
edge partitioning.

I To keep the parallel matching algorithm unchanged
irrespective of partitioning, we did this modification from the
conventional 1D.

Md. Mostofa Ali Patwary et al. Parallel Greedy Graph Matching



Introduction
Matching Algorithms

Experiments
Conclusion

Why bulk-synchronous parallel (BSP)

I BSP is characterized by alternating between computation
phases and communication phases, each ended by a global
barrier synchronization.

I Enhances load balancing by detecting at an earlier stage that a
processor has run out of work.

I BSPlib communication library [Hill et al., 1998] takes some of
the tediousness away of message-passing for irregular
computations.

I Many communication optimizations can be left to the system.
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The Sequential Karp–Sipser Algorithm: Analysis

I There are two phases of in the execution of the
Karp–Sipser algorithm.

I Phase 1: Starts at the begining of the while loop and ends
when the current graph has no singleton vertex.

I Phase 2: The remainder of the algorithm.

I If M1 is the set of vertices chosen in Phase 1, then there exists
some maximum cardinality matching that contains M1,
[Aronson et al., 1998, Fact 1].

I Almost all the remaining vertices are matched by the
Karp–Sipser algorithm in the special case where G is a
random graph [Aronson et al., 1998, Chebolu et al., 2008].
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